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Abstract
We have computed quantum wavefunctions in the high-energy (semiclassical)
regime in a system—the stadium billiard with leads allowing particles to enter
and escape—exemplifying chaotic scattering. The results exhibit a structure
associated with classical paths that is dramatically more pronounced than the
scars due to periodic orbits seen in bound systems. Moreover, this structure is
seen at all energies. Our results differ significantly from those previously
conjectured on the basis of computations in the low-energy regime. The
dominant role played by short classical paths is explained by a semiclassical
theory based on the analytic structure of the Green function. This is verified by
a direct semiclassical computation of wavefunctions using classical scattering
trajectories.

PACS numbers: 03.65.Sq, 05.45.Mt

One of the central problems in the field of quantum chaos is to elucidate the semiclassical
structure of quantum wavefunctions in systems having a chaotic classical limit. In bound
systems, when the classical dynamics is ergodic Shnirelman’s theorem [1] asserts that, on scales
that are large compared to a de Broglie wavelength, typical eigenfunctions are equidistributed
on the corresponding surface of constant energy in phase space in the limit as h̄ → 0. This is
consistent with the general expectation that eigenfunctions should be semiclassically related
to invariant sets in phase space. On the wavelength scale, fluctuations around this average
value are believed to be universal, and to be described by Berry’s random wave model [2]. For
example, this model is believed to describe statistical properties of individual eigenfunctions,
such as spatial correlations defined with respect to averages over position.

In 1984 Heller [3] observed that even in strongly chaotic systems some eigenfunctions
are noticeably scarred by (unstable) short periodic orbits; that is, the probability density is
enhanced in the vicinity of such orbits. Periodic orbits also represent classical invariant
sets, and so this is consistent with the general semiclassical expectation outlined above.
Shnirelman’s theorem implies that scarred states are rare, in the sense that sequences of states
which do not converge to the equidistributed limit have zero density. Recently scarring has
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been proved to occur in two model systems [4, 5], but not to occur in a third [6]. However,
these systems are all atypical and the status of scarring in generic examples remains open.

The basic general semiclassical theories of scarring that have been developed apply to
averages of eigenstates over energy ranges in which the number of levels increases as h̄ → 0
[3, 7–10]. This is often referred to as weak scarring. In these theories, the energy-averaged
eigenfunctions are related to sums over classical periodic orbits which diverge in the limit as
the energy averaging range tends to zero. The fine structure of individual eigenfunctions
is therefore governed by properties of semiclassically long orbits. Consistency with
Shnirelman’s theorem is guaranteed by the fact that, when weighted appropriately, these long
orbits are themselves equidistributed on the corresponding surface of constant energy in phase
space [11].

We focus our attention here on the wavefunctions of chaotic open (i.e. scattering) systems
[12, 13]. The quantum and semiclassical properties of such systems have been the subject of
extensive study [14–16]. Our aim is to demonstrate that for all energies the wavefunctions
exhibit structures in the semiclassical regime that are predominantly supported (i.e. dominated)
by short classical trajectories. They are therefore far from being equidistributed and far from
being universal. We do this by computing high-energy wavefunctions in a system exemplifying
chaotic scattering. The results of these computations are explained in terms of a general
semiclassical theory. Crucially, this does not rely on energy averaging—the structures we here
draw attention to seem to occur at any given energy. Finally, as a test, the theory is used to
make direct semiclassical computations of wavefunctions using classical trajectories.

The main conclusion therefore is that semiclassical wavefunctions in chaotic scattering
systems are qualitatively different from those in bound systems in that classical trajectories
generate the dominant structures, rather than occasionally appearing as decorations. The
complexity of these trajectories manifests itself as complexity in the wavefunctions, which
have a dramatically richer texture than those in bound systems, where large scale uniformity
is the main characteristic. This difference arises because the relevant trajectories in scattering
systems are themselves non-uniform, a consequence of the fact that they can escape.

These conclusions differ markedly from conjectures put forward by Akis et al [17], who
suggested that quantum wavefunctions in classically chaotic scattering systems should be
semiclassically scarred by short periodic orbits. We did not find this in our computations. In
our case the dominant structures are associated with scattering trajectories rather than periodic
orbits. Moreover, these orbits provide the support for the wavefunctions, rather than scarring
a quantum-ergodic background. We believe that the difference is due to the fact that the
computations reported in [17] relate to relatively low energies and so are not representative of
the semiclassical limit.

The system for which we calculate wavefunctions is an open two-dimensional hard-wall
Bunimovich stadium with area A coupled to a pair of leads of width d. The stadium is
characterized by the radius a of the semicircles and the half-length l of the straight sections.
We choose a = l and d/

√
A = 0.0935; the billiard is then maximally chaotic and weakly (but

perfectly) open. In the leads, the wavefunctions are quantized in the transverse direction. The
maximum number of quantized transmittable modes increases as the energy grows (i.e. as one
approaches the semiclassical regime). As an initial condition, a wave in a given propagation
mode n enters the cavity. To find the scattered wavefunction ψ for particles entering and
leaving the cavity via the leads we solve the time-independent Schrödinger equation with
Dirichlet boundary conditions using the plane-wave-expansion method [18]. This method
involves discretization of angles for propagation of the base functions, giving rise to a matrix
equation that has to be solved numerically. We then apply the singular value decomposition to
avoid numerical instability in the solution, obtaining reflection and transmission amplitudes
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Figure 1. (a) The wavefunction probability density and its partial magnification (inset) for
k
√

A = 2672.3758 (kd/π = 79.577 472). An initial wave in a mode corresponding to n = 51
comes through the left lead into the cavity. The density plot shows about 95% of the largest
wavefunction probability density. (b) Corresponding classical trajectories. Eleven equidistant
injection positions with injection angles ±θ51 = ±0.695 650 47 at the entrance are chosen.
The injection angle (both positive and negative) into the cavity is chosen to coincide with the
quantization condition in the lead for the initial wave in (a). Each trajectory is plotted until it
escapes from one of the leads.

and ψ for a given wave number k = √
E, where E is the energy. This method—principally the

introduction of the singular value decomposition—has led to a very significant improvement
in our ability to compute the scattered wavefunction in the high-energy regime; for example,
we have computed wavefunctions when the ratio of the system dimension to the wavelength
is of the order of 1000 (see figures 1 and 2).

The results of our computations show clearly that in all wavefunctions (i.e. at all energies)
the dominant structures are associated with classical trajectories that scatter from the incoming
lead to the outgoing lead. This is illustrated in figures 1 and 2, where both wavefunctions
and trajectories are plotted. Because of the quantization in the transverse direction in the
entrance lead, all waves enter the cavity with the fixed angle θn = sin−1(nπ/(kd)) (with the
same probability for ±θn). The trajectories shown also enter with this angle. The quantum
wavefunctions are clearly far from uniform in the stadium—instead they inherit the complex
hyperbolic structure of the classical orbits, as well as caustics, right down to the finest scales.
This structure can be perceived even for orbits that make many bounces on the boundaries
of the cavity (it even continues into the exit lead). It is apparent that it is nonuniversal. We
emphasize that the pictures represent wavefunctions associated with particular energies, rather
than energy averages, and that they represent typical rather than special behaviour. We also
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Figure 2. (a) The wavefunction probability density and its partial magnification (inset) for
k
√

A = 3046.8419 (kd/π = 90.728 249). An initial wave in a mode corresponding to n = 16
comes through the left lead into the cavity. The density plot shows about 95% of the largest
wavefunction probability density. (b) Corresponding classical trajectories. Eleven equidistant
injection positions with injection angles ±θ16 = ±0.177 277 92 at the entrance are chosen.
The injection angle (both positive and negative) into the cavity is chosen to coincide with the
quantization condition in the lead for the initial wave in (a). Each trajectory is plotted until it
escapes from one of the leads.

point out that diffraction effects due to the opening corners are relatively small at these high
energies.

In order to understand the classical structures apparent in figures 1 and 2 we develop a
simple semiclassical theory. This generalizes straightforwardly to quantum scattering in all
chaotic systems. We begin with the wave number dependent (or energy-dependent, i.e. time-
independent) Green function for open (unbounded) systems with partial boundary conditions.
This may be expressed as

G(q′, q; k) =
∫

ψ∗
γ (q′)ψγ (q)

k2 − k2
γ

dγ (1)

where the wavefunctions ψγ corresponding to the wave numbers kγ form a complete
orthonormal set and individually satisfy the boundary conditions. The Green function for
open systems can also be expressed as a sum over resonances in the complex plane:

G(q′, q; k) =
∑

r

φr(q′, q)

k2 − α2
r

(2)

where αr and φr(q′, q) are, respectively (complex) resonance poles and strengths, Re αr > 0,
and Im αr < 0.
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The connection with classical mechanics is achieved using the semiclassical
approximation to the Green function. For systems with two degrees of freedom, this
is [19]

GSC(q′, q; k) =
∑

p(q→q′)

k−1/2Ap exp
[
i
(
klp − π

2
νp

)]
. (3)

Here lp and νp denote, respectively, the length and the Maslov index of the path p, and
k−1/2Ap ≡ (1/

√
2π i)

√
det(Dp(k)) where Dp(k) denotes its weighting (deflection) factor.

In the case of free motion, such as in billiard geometries, Ap does not depend on k. The
semiclassical Green function GSC(q′, q; k) describes the probability amplitude for propagation
from q to q′ at a fixed wave number k in terms of a sum over all classical paths (labelled p)
connecting these two points.

Fourier transforming the Green functions in equations (2) and (3) gives [20]

− i

2

∑
r

φr(q′, q)√
αr

exp(−iαr |x|) ≈
∑

p

Ap exp
(
−i

π

2
νp

)
δ(lp − x). (4)

After integrating each side of this equation from x = X(> 0) to ∞ we obtain

−1

2

∑
r

φr(q′, q)

α
3/2
r

exp(−iαrX) =
∑

p(lp>X)

Ap exp
(
−i

π

2
νp

)
. (5)

This shows that (i) when most of the poles αr are located very close to the real axis, the
semiclassical contribution of paths with lengths larger than X is highly oscillatory, because of
the oscillatory exponential factor on the left-hand side of equation (5); (ii) when most of the
poles are located far from the real axis, the semiclassical contribution coming from paths with
lengths larger than X vanishes exponentially, because of the exponential decay factor on the
left-hand side of equation (5). If the system is almost (or completely) closed, (i) is the case and
the semiclassical contribution of shorter paths to the semiclassical wavefunction is dominant
only after averaging out the oscillatory contributions coming from the longer paths, as in the
weak scarring theories of Heller [3], Bogomolny [7] and Berry [8] for bound systems. On the
other hand, if the system is completely open, (ii) is the case and the semiclassical contribution
of shorter paths dominates the wavefunctions without any need for averaging. The maximal
length scale X for the semiclassical contribution to be important may be estimated in terms of
the decay rate, the distance scale of the poles α closest to the real axis, to be X = |Im[α]|−1.
In the open billiard system we study here, X is roughly of the order of 10

√
A [21].

These results suggest that semiclassical approximations to quantum wavefunctions in
scattering systems based on using only short paths should be much more accurate than
in bound systems. They thus explain the dominant role played by classical paths in the
quantum wavefunctions plotted in figures 1 and 2. They are in agreement with previous
results concerning the spectral analysis of quantum fluctuating scattering amplitudes [22].

To make this connection more explicit we use the fact that the wavefunction ψ(q) can be
related directly to the semiclassical Green function. The initial wavefunction at the entrance
may be written in the form

ψin = ψn(η) ≡
√

2/d sin[(nπ/d)(η + d/2)] (6)

where η is a local coordinate in the transverse direction at the entrance. Then we have a
general expression for the wavefunction in the cavity region in the form

ψ(q′) =
∫

G(q′, q(η); k)ψn(η) dη. (7)



L222 Letter to the Editor

Figure 3. Semiclassical wavefunction probability densities for (a) k
√

A = 2672.3758 with n = 51
and (b) k

√
A = 3046.8419 with n = 16. An initial wave in a mode n comes through the left lead

into the cavity. The density plot shows about 95% of the largest wave probability density. The
classical trajectories shown in figures 1(b) and 2(b) are used for the semiclassical calculations in
(a) and (b), respectively.

Applying the stationary phase approximation to the integral in equation (7) gives

ψ(q′) ≈
∫

GSC(q′, q(η); k)ψn(η) dη

=
√

2

kd

∑
p(q(±θn;ηp)→q′)

Ap exp
[
i
(
klp − π

2
νp

)]
sin

[
nπ

d

(
ηp +

d

2

)]
. (8)

This expression allows for the direct calculation of the semiclassical approximation to
wavefunctions using scattering paths. As we see in figure 3, this approximation agrees well
with the exact quantum wavefunctions in the high-energy regime, plotted in figures 1(a) and
2(a). In particular, the structure associated with the classical paths is manifestly captured. As
a crude test we computed the variance

∫ |ψ(q) − ψSC(q)|2 dq per unit area in the billiard and
obtained significantly smaller values (1.04 for figures 1(a) and 3(a); 1.47 for figures 2(a) and
3(b)) for the same wavefunction compared to when the wavefunctions correspond to different
states (2.27 for figures 2(a) and 3(a); 1.74 for figures 1(a) and 3(b)).

In conclusion, we have demonstrated that the wavefunctions in systems exhibiting chaotic
scattering possess a rich and complex structure in the semiclassical regime associated with
short classical scattering trajectories. Unlike in bound systems, they are therefore far from
being equidistributed and far from being universal. This behaviour can be understood in terms
of the decay properties of scattering systems.

Chaotic scattering systems are often used as models for transport through mesoscopic
open devices. We note that the statistical properties of conductance fluctuations in such
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devices are universal. However, this emerges after averaging over energy, i.e. by sampling
data at different energies. The nonuniversal features we draw attention to here relate to spatial
correlations in wavefunctions at particular (fixed) energies. This distinction between spatial
averaging and energy averaging is a key difference with respect to closed systems. It is
also the case that we are considering systems in which the incoming and outgoing leads are
semiclassically wide enough that the short-time dynamics dominates.
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